Overview

This standard identifies the competences you need to carry out efficient and effective fault diagnosis on electrical equipment and circuits, in accordance with approved procedures. You will be required to diagnose faults on a range of electrical equipment, such as single and three-phase power supplies, motors and starters, switchgear and distribution panels, electrical plant, control systems and equipment, and luminaires. You will be expected to use a variety of fault diagnosis methods and techniques, and to utilise a number of diagnostic aids and equipment. From the evidence gained, you will be expected to identify the fault and its probable cause, and to suggest action to remedy the problem.

Your responsibilities will require you to comply with organisational policy and procedures for the fault diagnostic activities undertaken, and to report any problems with these activities or the tools and equipment used that you cannot personally resolve, or that are outside your permitted authority, to the relevant people. You will be expected to work with minimal supervision, taking personal responsibility for your own actions and for the quality and accuracy of the work that you carry out.

Your underpinning knowledge will provide a good understanding of your work, and will provide an informed approach to applying fault diagnosis procedures on electrical equipment and circuits. You will understand the various fault diagnosis methods and techniques used, and their application. You will also know how to interpret and apply information obtained from the diagnostic aids and equipment, in adequate depth to provide a sound basis for carrying out the activities and for identifying faults or conditions that are outside the required specification.

You will understand the safety precautions required when carrying out the fault diagnosis activities, especially those for isolating the equipment. You will also understand your responsibilities for safety and the importance of taking the necessary safeguards to protect yourself and others in the workplace.
Performance criteria
You must be able to:

1. work safely at all times, complying with health and safety and other relevant regulations, directives and guidelines
2. review and use all relevant information on the symptoms and problems associated with the products or assets
3. investigate and establish the most likely causes of the faults
4. select, use and apply diagnostic techniques, tools and aids to locate faults
5. complete the fault diagnosis within the agreed time and inform the appropriate people when this cannot be achieved
6. determine the implications of the fault for other work and for safety considerations
7. use the evidence gained to draw valid conclusions about the nature and probable cause of the fault
8. record details on the extent and location of the faults in an appropriate format
Knowledge and understanding

You need to know and understand:

1. the health and safety requirements of the area in which the fault diagnosis activity is to take place, and the responsibility these requirements place on you
2. the isolation and lock-off procedure or permit-to-work procedure that applies
3. what constitutes a hazardous voltage and how to recognise victims of electric shock
4. how to reduce the risks of a phase to earth shock (such as insulated tools, rubber mating and isolating transformers)
5. the importance of wearing protective clothing and other appropriate safety equipment (PPE) during fault diagnosis activities
6. hazards associated with carrying out fault diagnosis on electrical equipment (such as live electrical components, stored energy, misuse of tools), and how to minimise these and reduce any risks
7. the procedure to be adopted to establish the background of the fault
8. how to evaluate the various types of information available for fault diagnosis
9. how to use the various aids and reports available for fault diagnosis
10. how to use various items of fault diagnostic equipment to investigate the problem
11. the various fault finding techniques that can be used, and how they are applied (such as half-split, input-to-output, emergent problem sequence, six point technique, function testing, unit substitution, injection and sampling techniques and equipment self-diagnostics)
12. how to evaluate sensory information (such as sight, sound, smell, touch)
13. how to analyse evidence and evaluate possible characteristics and causes of specific faults/problems
14. how to relate previous reports/records of similar fault conditions
15. the care, handling and application of electrical test instruments (such as multimeters, insulation resistance testers)
16. how to calibrate electrical test instruments and check that they are free from damage and defects
17. how to obtain and interpret drawings, circuit and physical layouts, charts, specifications, manufacturers’ manuals, history/maintenance reports, graphical electrical symbols, BS7671/IET wiring regulations, and other documents needed in the maintenance process
18. the basic principles of how the circuit functions, the operating sequence, the purpose of individual units/components and how they interact
19. the different types of cabling (such as multi-core cables, single-core cables, SWA cables, MI cables, screened cables), their associated fittings, and their application
20. the different types of motors and starters, and their operation
21. the different types of control systems and components, and their operation
22. the different types of electrical components (such as plugs, switches, lighting and fittings, junction boxes, consumer units), and their operation
23. how to evaluate the likely risk to yourself and others, and the effects the fault could have on the overall process or system
24. how to prepare and produce a risk analysis report, where appropriate
25. how to prepare a report or take follow-up action which satisfies the company policy on concluding fault diagnosis
26. the extent of your own authority and to whom you should report if you have problems that you cannot resolve
1. Carry out all of the following during the fault diagnostic activity:
 1. plan the fault diagnosis, based on the available information about the fault
 2. obtain and use the correct issue of company and/or manufacturers' drawings and maintenance documentation
 3. adhere to procedures or systems in place for risk assessment, COSHH, personal protective equipment and other relevant safety regulations and procedures to realise a safe system of work
 4. ensure the safe isolation of equipment (such as electricity, mechanical, gas, air or fluids)
 5. provide and maintain safe access and working arrangements for the fault finding/maintenance area
 6. carry out the fault diagnostic activities using approved procedures
 7. collect equipment fault diagnostic evidence from `live' and isolated circuits
 8. disconnect or isolate components or parts of circuits, when appropriate, to confirm diagnosis
 9. identify the fault and determine appropriate corrective action
 10. dispose of waste items in a safe and environmentally acceptable manner, and leave the work area in a safe condition

2. Carry out fault diagnosis on six of the following types of equipment:
 1. single-phase power circuits
 2. motors and starters
 3. three-phase power circuits
 4. control systems and components
 5. direct current power circuits
 6. electrical plant
 7. switchgear and distribution panels
 8. luminaires

3. Collect fault diagnostic evidence from four of the following sources:
 1. the person or operator who reported the fault
 2. recording devices
 3. test instrument measurements (such as watt meters,
4. Use a range of fault diagnostic techniques, to include **two** of the following:
 1. half-split technique
 2. input/output technique
 3. emergent sequence
 4. injection and sampling
 5. unit substitution
 6. six point technique
 7. function/performance testing
 8. equipment self-diagnostics

5. Use a variety of diagnostic aids and equipment to include **two** of the following:
 1. logic diagrams
 2. equipment self-diagnosis
 3. trouble shooting guides
 4. flow charts or algorithms
 5. fault analysis charts (such as fault trees)
 6. electronic aids
 7. manufacturers' manuals

6. Use **all** of the following fault diagnosis procedures:
 1. inspection (such as breakages, wear/deterioration, signs of overheating, missing parts, loose fittings)
 2. operation (such as manual switching off and on, RCD test buttons, automatic switching/timing/sequencing, desired outputs)
 3. measurement (such as voltage, current, continuity, power, temperature, luminescence)

7. Use **three** of the following types of test equipment to aid fault diagnosis:
1. multimeter
2. watt meter
3. voltmeter
4. ammeter
5. earth-loop impedance tester
6. insulation resistance tester
7. portable appliance tester
8. light meter
9. other specific test equipment

8. Find faults that have resulted in two of the following breakdown categories:
 1. intermittent action or circuit failure
 2. partial failure or reduced performance
 3. complete breakdown

9. Provide a record of the outcome of the fault diagnosis, using one of the following:
 1. step-by-step analytical report
 2. preventative maintenance log/report
 3. corrective action report
 4. company-specific reporting procedure
<table>
<thead>
<tr>
<th>Developed by</th>
<th>Semta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version Number</td>
<td>2</td>
</tr>
<tr>
<td>Date Approved</td>
<td>February 2015</td>
</tr>
<tr>
<td>Indicative Review Date</td>
<td>March 2018</td>
</tr>
<tr>
<td>Validity</td>
<td>Current</td>
</tr>
<tr>
<td>Status</td>
<td>Original</td>
</tr>
<tr>
<td>Originating Organisation</td>
<td>Semta</td>
</tr>
<tr>
<td>Original URN</td>
<td>SEMEM3-11</td>
</tr>
<tr>
<td>Relevant Occupations</td>
<td>Maintenance Engineer</td>
</tr>
<tr>
<td>Suite</td>
<td>Engineering Maintenance Suite 3</td>
</tr>
<tr>
<td>Keywords</td>
<td>Engineering; manufacturing; maintenance; electrical; fault finding; fault diagnosis; power supply; process plant; motors; starters; switchgear; distribution panels</td>
</tr>
</tbody>
</table>